Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
iScience ; 24(9): 102941, 2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1340678

ABSTRACT

Global deployment of an effective and safe vaccine is necessary to curtail the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we evaluated a Newcastle disease virus (NDV)-based vectored-vaccine in mice and hamsters for its immunogenicity, safety, and protective efficacy against SARS-CoV-2. Intranasal administration of recombinant (r)NDV-S vaccine expressing spike (S) protein of SARS-CoV-2 to mice induced high levels of SARS-CoV-2-specific neutralizing immunoglobulin A (IgA) and IgG2a antibodies and T-cell-mediated immunity. Hamsters immunized with two doses of vaccine showed complete protection from lung infection, inflammation, and pathological lesions following SARS-CoV-2 challenge. Importantly, administration of two doses of intranasal rNDV-S vaccine significantly reduced the SARS-CoV-2 shedding in nasal turbinate and lungs in hamsters. Collectively, intranasal vaccination has the potential to control infection at the site of inoculation, which should prevent both clinical disease and virus transmission to halt the spread of the COVID-19 pandemic.

2.
Viruses ; 12(9)2020 09 01.
Article in English | MEDLINE | ID: covidwho-742847

ABSTRACT

Until vaccines and effective therapeutics become available, the practical solution to transit safely out of the current coronavirus disease 19 (CoVID-19) lockdown may include the implementation of an effective testing, tracing and tracking system. However, this requires a reliable and clinically validated diagnostic platform for the sensitive and specific identification of SARS-CoV-2. Here, we report on the development of a de novo, high-resolution and comparative genomics guided reverse-transcribed loop-mediated isothermal amplification (LAMP) assay. To further enhance the assay performance and to remove any subjectivity associated with operator interpretation of results, we engineered a novel hand-held smart diagnostic device. The robust diagnostic device was further furnished with automated image acquisition and processing algorithms and the collated data was processed through artificial intelligence (AI) pipelines to further reduce the assay run time and the subjectivity of the colorimetric LAMP detection. This advanced AI algorithm-implemented LAMP (ai-LAMP) assay, targeting the RNA-dependent RNA polymerase gene, showed high analytical sensitivity and specificity for SARS-CoV-2. A total of ~200 coronavirus disease (CoVID-19)-suspected NHS patient samples were tested using the platform and it was shown to be reliable, highly specific and significantly more sensitive than the current gold standard qRT-PCR. Therefore, this system could provide an efficient and cost-effective platform to detect SARS-CoV-2 in resource-limited laboratories.


Subject(s)
Artificial Intelligence , Betacoronavirus/isolation & purification , Coronavirus Infections/virology , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pneumonia, Viral/virology , Animals , COVID-19 , COVID-19 Testing , Chlorocebus aethiops , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Dogs , Humans , Madin Darby Canine Kidney Cells , Pandemics , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL